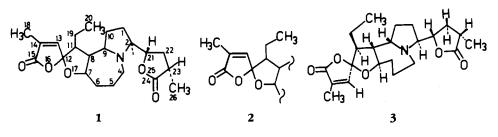
A STUDY OF STEMONA ALKALOIDS, III. APPLICATION OF 2D-NMR SPECTROSCOPY IN THE STRUCTURE DETERMINATION OF STEMONININE

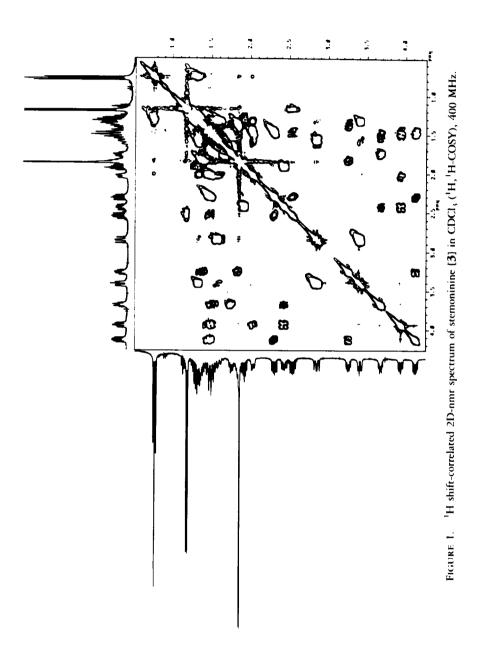
DONGLIANG CHENG,¹ JIA GUO, TZE TSIN CHU,

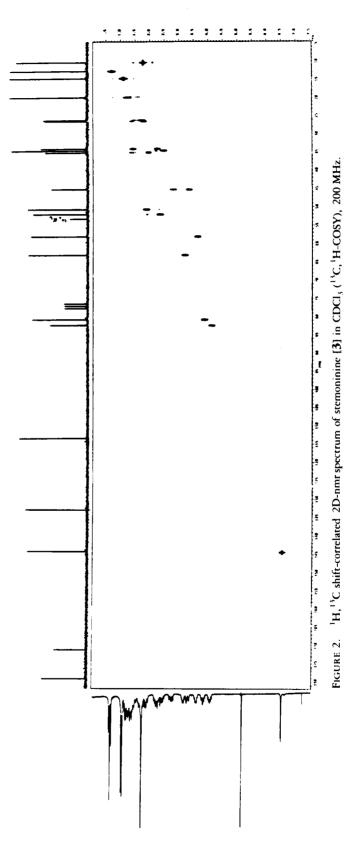

Department of Chemistry, Lanzhou University, Lanzhou, China

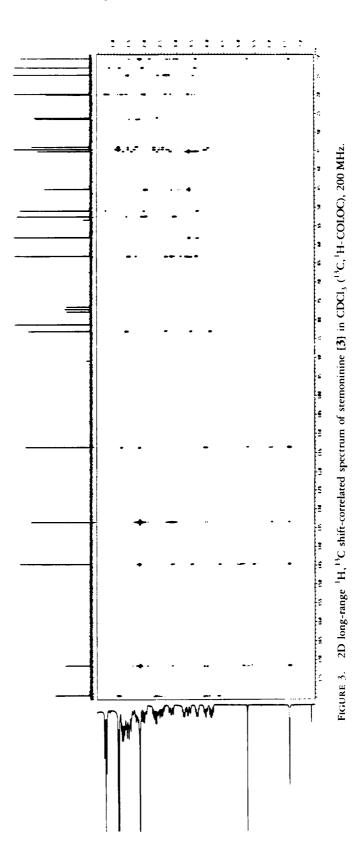
and ERHARD RÖDER*

Pharmaceutical Institute of Bonn University, D-5300 Bonn-Endenich, An der Immenburg 4, West Germany

ABSTRACT.—A new alkaloid, stemoninine, obtained from the root of *Stemona sessilifolia*, and its stereochemistry have been elucidated by the analysis of the high resolution ¹H-nmr spectrum; ¹H, ¹H-COSY; ¹³C, ¹H-COSY shift correlated two-dimensional nmr spectra and ¹H long-range shift; and ¹³C, ¹H-COLOC- and nOe-correlated 2D-nmr techniques.


Previously we isolated the new alkaloid stemoninine from the root of Stemona sessilifolia (Mig.) Frack et Sav. (Stemonaceae; formerly Roxburghiaceae) and elucidated its structure by ir, uv, ¹H-nmr, ¹³C-nmr, and ms data (1,2). In the present paper, we further attempt to elucidate the structure and relative configuration of the molecule using 2D-nmr techniques such as ¹H (¹H, ¹H-COSY), ¹³C-¹H (¹³C, ¹H-COSY) shift correlations and ¹H-¹H long-range couplings shift, ¹³C-¹H long-range couplings shift (¹³C, ¹H-COLOC) as well as nOe-correlated 2D-nmr techniques (NOESY). From the analysis of these spectral data of stemoninine, the structure **3** is proposed.




RESULTS AND DISCUSSION

The molecular formula of stemoninine is $C_{22}H_{31}NO_5$. The molecular ion $[M]^+$ at m/z 389.2205 (calcd 389.2202) requires eight degrees of unsaturation. The ¹H-nmr signal at 0.77 ppm (t, J=7.5 Hz) is due to a methyl group; two methyl groups are at 1.17 ppm (d, J=7.0 Hz) and 1.85 ppm (d, J=2.0 Hz); one olefinic proton is at 6.59 ppm (d, J=2.0 Hz). Two signals at 171.3 ppm and 179.1 ppm in the ¹³C-nmr carbonyl region and one signal at 113.5 ppm indicate that a ketal group is present, and strong ir absorption around 1765 cm⁻¹ suggested that two γ -lactones are present. The analysis of the high resolution ¹H-nmr spectrum (400 MHz) ¹H, ¹H-COSY (Figure 1) and ¹³C, ¹H-COSY (Figure 2) led to the full clarification of the carbon and proton signals (Table 1). The structure **1** was supported based on 2D long-range ¹³C, ¹H-shift correlated spectra (¹³C, ¹H-COLOC) (Figure 3), which illustrate important two, three-, and four-bond couplings in the molecule (Table 2). The carbonyl carbons resonating at 179.1 ppm (C-24) and 171.3 ppm (C-15) correlate with 26-CH₃, 22-H, and 21β-H, and with 18-CH₃ and 13-H. The quaternary (C-12) carbon with $\delta = 113.5$

¹Visiting scientist in the Pharmaceutical Institute of Bonn University from October 1984 to September 1986.

Carbon	ppm	Proton	ppm	J(Hz)
C-1	26.5	1α,β-Η	1.35, 1.80	m
С-2	63.4	2α-H	3.25	ddd 5.5(1 β), 7.0(21 β), 10.0(1 α)
С-4	45.6	4α-H	2.86	dd 11.5 (5 α), 15.5 (4 β)
		4β-Η	3.41	dd 9.0 (5 β), 15.5 (4 α)
С-5	20.2	5α-H	1.57	m
		5β-Н	1.33	m
С-6	35.3	6β-н	1.43	m
		6α-H	2.03	brdd 3.5 (7α), 12.0 (6β)
C- 7	81.1	7α-H	3.93	ddd 3.5 (6α), 9.5 (6β), 11.0 (8β)
С-8	52.4	8β-н	2.43	ddd 5.5 (11 α), 9.5 (9 β), 11.0 (7 α)
С-9	58.3	9β-н	3.68	dt 6.0 (10a), 6.0 (10b), 9.5 (8b)
C-10	26.3	10α, β- Η	1.50, 1.75	m
C-11	51.2	11α-H	1.93	ddd 5.5 (8β), 7.0 (19- H_a), 12.0 (19- H_b)
C-12	113.5			
C-13	144.4	13-H	6.59	$d 2.0(18-CH_3)$
C-14	133.5			
C-15	171.3	11		
C-18	10.3	18-CH,	1.85	d 2.0(13-H)
C-19	20.0	19 ₂ -H	1.28	m
		19 _ь -Н	1.60	m
C-20	12.7	20-CH ₃	0.77	t 7.5
C-21	82.4	21 β-Η	4.14	ddd 5.5 (22 α), 7.0 (2 α), 10.0 (22 β)
C-22	34.1	22 β- Η	1.43	m
		22α-H	2.31	ddd 5.5(21β), 9.0(23β), 12.0(22β)
C-23	34.7	23 β- Η	2.54	ddq 7.0 (26-CH ₃), 9.0 (22 α), 12.0 (22 β)
C-24	179.1			
C-26	14.8	26-CH ₃	1.17	d 7.0 (23β)

TABLE 1. ¹³C-nmr (100.6 MHz) and ¹H-nmr (400 MHz) Data of Stemoninine [3].

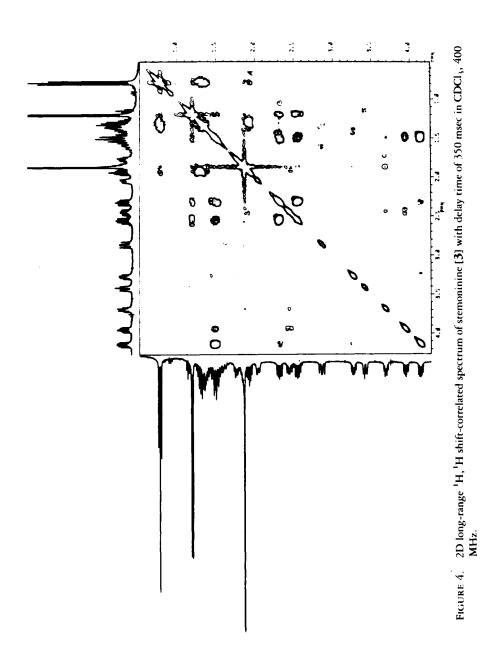
ppm shows long-range couplings with 13-H, 11-H, 19-H, and 7-H, thus indicating the presence of the ketal substructure and an ethyl group linked to C-11. Substructure **2** has also been indicated by metastable ions in the mass spectrum of stemoninine (2).

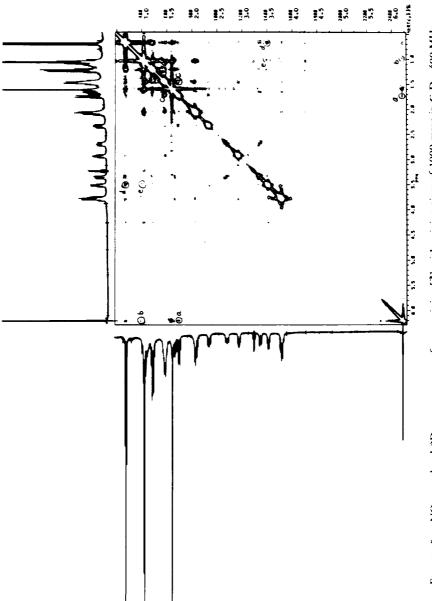
The assignment of the relative configuration of stemoninine was suggested by the ¹H-¹H-COSY long-range couplings, by nOe-correlated 2D nmr techniques (NOESY), and by observing the J-values in the high resolution ¹H-nmr spectrum. Fuyihiko and Akira (3) used the ¹H, ¹H-COSY long-range 2D nmr for this purpose. The 90- Δ -t₁-45- Δ -t₂ sequence was studied, when Δ (delay time) was set to 350 msec. The cross peaks due to small couplings (less than ca. 1 Hz) are enhanced, while those due to large couplings (more than 3 Hz) are suppressed (Figure 4). The cross peak A is due to the longrange coupling between 11-H, and 20-CH₂. The cross peak B is due to the long-range coupling between 22-H and 26-CH₃, and the cross peak C is due to the long-range coupling between 9-H and 1-H. According to the Karplus equation, we compared our values with the coupling constants of two vicinal protons (8-H, 11-H, $J_{8,11}$ = 5.5 Hz). The corresponding dihedral angle (Φ) between two vicinal protons should be approximately 120°; consequently, the relative configuration of 11-H and 8-H should be trans. We observed also the coupling constant between the two vicinal protons at 7-H, 8-H, $J_{7,8} = 11.0$ Hz and between the two vicinal protons at 8-H, 9-H, $J_{8,9} = 9.5$ Hz. Their corresponding dihedral angles should be approximately 180° and 0°, respectively. This means that the former should be trans oriented and the latter cis oriented.

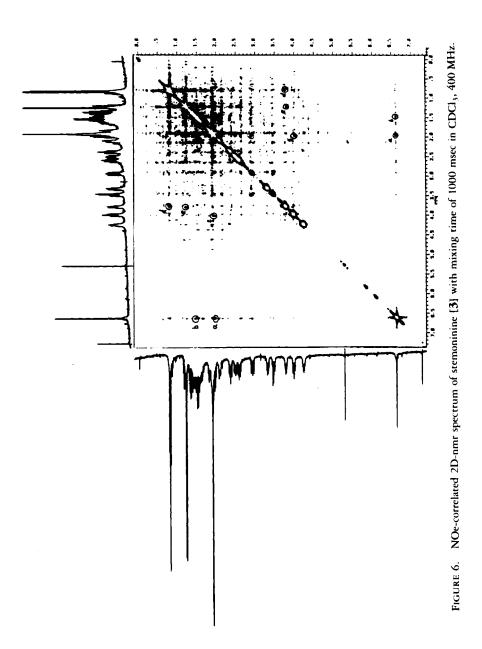
The nOe-correlated spectrum in a contour plot is shown in Figures 5 and 6; the pulse sequence 90-t-90- τ_m -90-t was used. We have used 600 msec and 1000 msec for τ_m ; CDCl₃/CDCl₃ and C₆D₆/C₆D₆ were used as solvents. The $\tau_m = 1000$ msec seems to

Carbon	ppm	Cross peaks to proton	
C -1	26.5	10-Н	
C-2	63.4	1-H, 2α -H, 4α -H, 4β -H, 9β -H, 22β -H	
C-4	45.6	4α -H, 4β -H, 6α -H	
C-5	20.2	4α -H, 4β -H, 5β -H, 6α -H, 6β -H, 8β -H	
С-6	35.3	4α-H, 4β-H, 5β-H, 6β-H, 7α-H, 8β-H	
C-7	81.1	cannot be observed	
С-8	52.4	6α-H, 6β-H, 11α-H	
C-9	58.3	4 β-H , 9 β-H	
C-10	26.3	1β-н, 8β-н	
C-11	51.2	9β-H, 11α-H, 20-CH,	
C-12	113.5	7α -H, 9 β -H, 11 α -H, 13-H	
C-13	144.4	13-H, 18-CH,	
C-14	133.5	7α -H, 13-H, 18-CH ₃	
C-15	171.3	13-H, 18-CH,	
C-18	10.3	13-H	
C-19	20.0	11α -H, 19_{b} -H, 20-CH,	
C-20	12.7	11α-H, 19 _a -H, 20-CH ₃	
C-21	82.4	4β-H, 21β-H, 23β-H	
C-22	34.1	21β -H, 22α -H, 22β -H, 23β -H, 26 -CH,	
C-23	34.7	22α-H, 22β-H, 23β-H, 26-CH,	
C-24	179.1	21 β-H , 22α-H, 23 β-H	
C-26	14.8	22β-Н, 23β-Н	

TABLE 2. Cross Peaks of Carbon to Proton in the NOESY of Stemoninine [3]; Several Observed Two-; Three-; and Four-Bond ¹³C-¹H Couplings in Stemoninine.


be better than 600 msec. The peaks a-f are quite useful for the elucidation of the stereochemistry. For example, the cross peak a,b indicates the proximity of the protons 11 α -H and 1 α -H to the olefinic proton 13-H; the cross peak c shows proximity of the proton 11 α -H to 10 α -H. Figure 6 shows the cross peak f indicating the close proximity of the proton 7 α -H to the proton 11 α -H.


We have carefully studied the molecular model of stemoninine. The assignment of the ketal of stemoninine should be appropriate in structure **3** when the olefinic proton 13-H is in close proximity to proton 11 α -H. That means that the relative configuration of the substituents attached to C-12 was determined. We have not observed the cross peak between 2-H and 21-H in NOESY and all nuclear Overhauser effects in nOe-difference spectra, but the relative configurations of C-2 and C-23 β have been determined in other *Stemona* alkaloids (4–9) to be 2 α -H and 23 β -H. The stereochemistry of stemoninine is, therefore, suggested as **3**.


EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—¹H- and ¹³C-nmr spectra were determined in CDCl₃ with TMS as internal standard on a Bruker WH 400 spectrometer at 400 MHz and 100.6 MHz, respectively. All the 2D nmr spectra were recorded on a Bruker WH 400 and 200 spectrometer. ¹H shift-correlated 2D nmr spectra were observed by using the pulse 90° -t₁-45 $^\circ$ -t₂(10). We used a 45 $^\circ$ rather than a 90 $^\circ$ pulse as mixing pulse without delay time (¹H, ¹H-COSY 45, Figure 1).

The ¹³C-¹H shift-correlated 2D nmr spectrum was obtained by using the refocusing delay time of 6.3 msec and the relaxation delay time of 1 sec (¹³C, ¹H-COSY, Figure 2). The ¹³C-¹H long-range shift correlated 2D nmr spectrum with polarization transfer via *J*-coupling experiment has been carried out with the aid of a Bruker micro-program (11); fixed delays D₃ and D₄ were adjusted to give maximum polarization for $J_{CH} = 8.0$ Hz (¹³C, ¹H-COLOC, Figure 3). The long range shift correlated 2D nmr with delay time of 350 msec was observed by using the 90°- Δ -t₁-45°- Δ -t₂ sequence (12) (Figure 4). The 2D nOe spectrum was measured by using the pulse sequence 90°-t₁-90°-t₂. We have used 600 msec and 1000 msec for τ_m , and CDCl₃ and C₆D₆ as solvent (NOESY, Figure 5 and 6) (13).

ACKNOWLEDGMENTS

We are greatly indebted to Professor Dr. E.B. Breitmaier, Institute of Organic Chemistry, Bonn University, for the analysis of the 2D-nmr spectra and beneficial discussions about the elucidation of the structure. We thank engineer C. Schmidt, Analytic Center, Bonn University, for the enthusiastic help and measurement of one- and two-dimensional nmr spectra.

LITERATURE CITED

- 1. C. Kuo and T.Ts. Chu, Acta Chim. Sin., 36, 291 (1978); Chem. Abstr., 90, 164717y (1979).
- 2. J. Guo, Acta Chim. Sin., 39, 865 (1981); Chem. Abstr., 97, 178697y (1982).
- 3. I. Fuyihiko and A. Akira, J. Chem. Soc., Perkin Trans. 2, 1773 (1985).
- 4. R.S. Xu, J.Y. Lu, J.H. Chu, T. Iwashita, H. Naoki, Y. Naya, and K. Nakanishi, Tetrahedron. 38, 2667 (1982).
- 5. M. Gotz and G.M. Strunz, in: "Alkaloids." Ed. by G. Wiesner, MTP, International Review of Sciences Organic Chemistry, Series 1, Vol. 9, Butterworths, London, 1975, pp. 134–160.
- 6. O.E. Edwards, in: "The Alkaloids." Ed. by R.H.F. Manske, Vol. 9, Academic Press, New York, 1967, pp. 545-551.
- K. Nakanishi, T. Goto, S. Ito, S. Natori, and S. Nozoe (Eds.), "Natural Products Chemistry," Vol. 2, Academic Press, New York, 1975, pp. 292–293.
- 8. H. Iizuka, H. Irie, N. Masaki, K. Osaki, and S. Uyeo, Chem. Commun., 4, 125 (1973).
- 9. T. Noro, S. Fukushima, A. Ueno, Y. Iitaka, and Y. Saiki, Chem. Pharm. Bull., 27, 1495 (1979).
- 10. W.P. Aue, E. Bartholdi, and R.R. Ernst, J. Chem. Phys., 64, 2229 (1976).
- 11. H. Kessler, C. Griesinger, J. Zarbock, and H.R. Loosli, J. Magn. Reson., 57, 331 (1984).
- 12. A. Bax and R. Freeman, J. Magn. Reson., 44, 542 (1981).
- 13. R. Baumann, A. Kumar, R.R. Ernst, and K. Wüthrich, J. Magn. Reson., 44, 76 (1981).

Received 17 February 1987